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Abstract. The paper presents a new algorithm for updating PageRank
on dynamic directed graphs after the addition of a node. The algorithm
uses the expected value of the random surfer to calculate the score of
the newly added node and nodes of the existing chain where the new
node is added. The complexity of the algorithm for k updates is O(k ×
davg). Extensive experiments have been performed on different synthetic
and real-world networks. The experimental result shows that the rank
generated by the proposed method is highly correlated with that of the
benchmark algorithm of Power Iteration.
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1 Introduction

Calculating PageRank [13] in a dynamic network is an important and challeng-
ing research problem. A network is dynamic if its topology changes with time,
either by adding nodes and edges or by deleting nodes and edges. Dynamic net-
works are ubiquitous in the age of information technology, e.g., Twitter mentions
network changes with each Tweet post or product purchasing network changes
for every product purchased, or the friendship of Facebook (or professional con-
nection in LinkedIn) network changes over time with the addition of new friends
(or contacts). In such cases, fast recalculation of the PageRank plays a vital
role in providing real-time services to its users. A node, if added to a network,
brings several edges along with it. This disrupts the existing PageRank scores.
Furthermore, the score of the newly added node needs to be determined. The
trivial solution is to recalculate the PageRank for the whole network. However,
it is time-consuming and not sustainable when nodes are added to the network
rapidly. In this connection, the research problem is to recalculate the PageRanks
for the affected nodes only instead of the whole network. Can we recalculate fast
without affecting the actual rank of the nodes?

PageRank, first proposed in [13], is conventionally used for ranking web pages.
It is based on the idea of Eigenvector centrality. Since its inception in 1999 [13],
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many different variants of PageRank algorithms [9, 11, 4, 10, 14, 19, 16] are pro-
posed. Many of these algorithms work only on static networks. While the deter-
ministic algorithms are slow for large networks, many randomized Monte Carlo
based approaches [4, 16, 14, 19, 2] are developed to provide fast solutions. Monte
Carlo based algorithms provide a good estimate of the PageRanks. However, the
modern network changes over time at a rapid speed. Many dynamic PageRank
[7, 5, 10, 18, 8, 12] approaches are proposed to deal with the dynamic network.
However, they cannot cope with the pace of the streaming graph, especially for
Big Data Social Networks. A simple and efficient algorithm to find the PageR-
anks for topological changes in dynamic streaming graphs is the need of the
hour.

In this paper, we propose a simple algorithm to update the PageRanks in
a directed network after adding a new node in the network. The proposed al-
gorithm, namely, Fast Pessimistic PageRank (FPPR), uses the expected value
of a random surfer to calculate the score of the new node by adding the scores
contributed by inlinks and estimating to what extent the chain may contribute
to the score of the node. The same method is used to update existing nodes
through the outlinks of the newly added node. The proposed algorithm executes
in the O(k × davg) time complexity for k newly added nodes. Here davg is the
average degree of the k nodes added to the graph. Further, FPPR takes only
O(|V |) additional space, specifically, 4×|V | space in worst case. The experiment
performed over several synthetic and real-world networks shows that the ranking
of the proposed method is highly correlated with the benchmark Power Iteration
based recalculation and better than Fast Incremental PageRank(FIPR) [18].

The paper is organized as: Section 2 provides a brief literature review, the
proposed FPPR method and its rationale are presented in Section 3, experiments
performed and corresponding results are reported in Section 4 and finally, Section
5 describes the conclusions of the research work.

2 Related Work

PageRank [13] defines the importance of a node based on the quality of the
neighboring nodes and the degree of the node. It is traditionally used for the
hyperlink network of WWW. In simple terms, it uses a random surfer model
where the random surfer clicks out-links with probability 1 − ρ and terminates
its walk to start a new walk at a random page with probability ρ.

There are many Monte Carlo based approaches [4, 16, 14, 19, 2] for approxi-
mating the PageRank. Monte Carlo methods majorly follow four different strate-
gies. These are (i) Monte Carlo end-point with a random start, (ii) Monte Carlo
end-point with cyclic start, (iii) Monte Carlo complete path, and (iv) Monte
Carlo complete path stopping at the dangling nodes. Out of these methods, the
last one shows better performance in terms of execution time compared to the
former three approaches [16]. In this method, R number of random walks are
simulated starting from each node, and the random walk terminates at dangling

nodes. The final rank vector is defined as π = [visits of each node]
total visits .
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Many algorithms for the dynamic network were proposed in the literature.
These are broadly classified into two categories viz, (i) aggregation algorithms [7,
5, 10] and (ii) Monte Carlo based algorithms [18, 12]. Although aggregate meth-
ods do not recompute the PageRanks of the whole graph, it aggregates the vicin-
ity of the disturbed area imposed by the new changes in the graph. Thus, these
methods recompute the PageRanks locally. The disadvantage of these methods
is the aggregation overhead. In addition, the accuracy highly depends on the size
of the subset selected for the aggregation or the area of the vicinity [3].

On the other hand, Monte Carlo based approaches use the theory of Markov
chains [8]. In order to recalculate PageRanks on network changes, all the ran-
dom walks which pass through the updated edges (or nodes) are required to
be adjusted [18, 12]. Hence, it requires keeping track of all the random walks it
performed earlier, and the same reason adds the overhead of additional space.
For example, in FIPR [18], at each node, the unique segment IDs pass through
the node, and the total number of visits to that node is stored. In addition, a
hashtable is kept in each node, with unique segment IDs and the nodes that
each segment covers whenever the graph is updated, visited, and the segments
are modified in particular to that updated node or edge. Hence, these methods
are not suitable for large-scale streaming graphs due to the significant memory
overhead.

id1 id1 id1 x6

(a)

id1

id1

id1

id4

id4

x6

(b)

Fig. 1. Examples

3 Proposed Fast Pessimistic PageRank (FPPR)
Algorithm for Dynamic Directed Graphs

The real-time use cases like finding the top-k popular products in an online shop-
ping cart or finding top-k spreaders of news considering reshare network etc. will
need high-speed computation of PageRank. In this section, we present the FPPR
algorithm, which is capable of recalculating the PageRanks of a directed network
upon the addition of new nodes. In order to achieve this, FPPR calculates the
expected score of random surfers considering the static graph, i.e., if the Monte
Carlo method is executed on the graph after the addition of the node, what
would be the expected score generated by the random walks. For example, in



4 Rohith Parjanya and Suman Kundu

Fig. 1(a), let ‘x6’ be a new node. Intuitively, the expected value of 80% (consid-
ering ρ = 0.2) of random walks through outlink reaching ‘x6’ must have visited
the new node ‘x6’ considering a static Monte Carlo simulation. This is what we
would like to calculate in the first phase (Approximate Visits, Definition 2). We
assume the incoming link is linear in the second phase (Link Sensitivity Index,
Definition 1), as shown in Fig. 1(a). For example, R random walks starting from
the node of ‘id1’ must have reached ‘x6’ in 3 hops, i.e., the expected number
of visits is R ∗ (0.8)3. Similarly, the next node must have gone ‘x6’ in 2 hops
(the expected visit is R ∗ (0.8)2), and so on. All these contribute to the score of
the new node. Note that the same formulation may not be valid for Fig. 1(b)
‘id4’. In such a case, the algorithm is prone to error. However, the algorithm
thinks pessimistic that “the ‘id4’ has a loop”. Then all random walks made on
those nodes must have reached the node ‘x6’, and our linear assumption is valid.
Accordingly, we are calculating the PageRank scores. A similar kind of process
is adopted in addressing the outlink from the new node as well.

Definition 1 (Link Sensitivity Index (LSI)). LSI defines the extent one
node affects the whole link chain it belongs. We assume the link chain is linear
and the LSI is mathematically defined by:

c+ c(c)1 + c(c)2 + c(c)3 + ....→ c(1− (c)n)

(1− c)
(1)

Here, c = 1− ρ is the probability that a random surfer moves forward and n
is the length of the chain. In our experiment we took c = 0.8.

Definition 2 (Approximate Visits (AV)). AV estimates the contribution of
the incoming links to the newly added node that a random walk might have used
if the random walk is executed from the scratch. If nodes have bidirectional edges,
a max of approximate visits is considered for both nodes. It is calculated as:

AV (v)←
∑

u∈Γin(v)

1

dout(u)
∗ (1− ρ) ∗ (AV (u)) (2)

Here, Γin(.) and dout(.) return the set of incoming neighbors and out degree
respectively.

FPPR does not keep track of all the random walk segments or aggregations.
FPPR takes only 4×|V | space. That is, space complexity isO(|V |). For a network
with billions of nodes, this provides a significant improvement.

The Algorithm 1 shows the steps of FPPR algorithm. The linkID of a node
is the ID given to a node to identify the chain to which it belongs. In other
words, linkID keeps track of all links or distinct chains in the graph. One may
note that a lower linkID is assigned to a node if multiple links exist through
that node. This convention will help resolving the conflicts. As we are keeping
track of every link(chain) in the graph, we store the length of each linkID.
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Algorithm 1 Calculate the approximate PageRank of the newly created node
1: Input: new node u, R = 1000
2: for all v ∈ Γin(u) do
3: Assign linkID to the node as described in text
4: linkID[v].length← linkID[v].length+ 1
5: temporary V ar ← R× LSI(n = linkID[v].length) {LSI calculated by Eqn. 1}
6: linkSensitivityIndex← max (linkSensitivityIndex, temporary V ar)
7: approxV isits← AV (v) {Using Eqn. 2}
8: end for
9: approxV isits← approxV isits+ R + linkSensitivityIndex

10: finalResult[u]← approxV isits, totalV isits← totalV isits+ approxV isits
11: approxV isits, linkSensitivityIndex← 0
12: for all v ∈ Γout(u) do
13: if u has bidirectional edge with v then
14: replace both nodes with maximum visits
15: else
16: Assign link ID to the node as described in text
17: linkID[u].length← linkID[u].length+ 1
18: temporary V ar ← R× LSI(n = linkID[u].length) {LSI calculated by Eqn. 1}
19: approxV isits← AV (u) {Using Eqn. 2}
20: finalResult[v]← approxV isits+ linkSensitivityIndex
21: totalV isits← totalV iists+ approxV isits+ linkSensitivityIndex
22: end if
23: end for
24: return finalResult÷ totalV isits

4 Experiments and Results

Experiments have been conducted on synthetically generated networks as well
as real-world networks. Both the Random Network and Barabasi-Albert [1] net-
works are used. The real world networks are Wiebo reshare network of [6]. The
salient features of these graphs are presented in Table 1. Barabasi-Albert net-
works support growth but as the Erdos-Renyi random graph do not support
growth, we use Algorithm 2 to generate the network. In order to get the dy-
namic character, we started with one node and added each node according to
their creation for Barabasi-Albert and Random networks, on the other hand for
real-world network, the timestamp is used.

Algorithm 2 Random graph generator
1: Input: number of nodes N {single node ’0’ exist in the graph}
2: for all x ∈ Γin(1, N) do
3: add x to Graph G
4: indegree← random[0, 1]
5: if indegree then
6: G.addEdge(random[0, x− 1], x)
7: end if
8: outdegree← random[0, x− 1]
9: shuffle.list[0, ..x− 1]

10: while outdegree do
11: G.addEdge(x, list[outdegree])
12: outdegree−−
13: end while
14: end for
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Table 1. Dataset Description

Name Nodes Edges Min In-Deg Max In-Deg Min Out-Deg Max Out-Deg

RW1 [6] 40 66 0 12 0 6
RW2 [6] 206 206 0 45 0 2
RW3 [6] 759 780 0 201 0 3
RW4 [6] 817 901 0 28 0 297
Random51 51 93 0 5 0 7
Random126 126 233 0 5 0 8
Random201 201 386 0 7 0 9
Random276 276 543 0 10 0 7
BA1 [1] 55 154 0 35 0 3
BA2 [1] 130 376 0 61 0 3
BA3 [1] 205 604 0 101 0 3
BA4 [1] 280 829 0 135 0 3

Comparing Methods The proposed methods have been compared with the
following methods.

– PowerIteration (PI) [13]: We consider this method as a benchmark in our
experiments. In the experiment, we restarted PI algorithm and recalculated
PageRank for the whole graph on each node addition.

– Static Monte Carlo (MC) [16]: Static Monte-Carlo method is the method
of approximate PageRanks of the network using Monte Carlo method. We
implemented the version of the complete path with dangling nodes. Similar to
PI, we recalculate the PageRanks every time a node is added to the network.
The number of random walk is considered in the experiment is 1000.

– Fast Incremental PageRank on Dynamic Networks (FIPR) [18]:
The method is designed for dynamic networks and proposed in 2019. As our
algorithm is designed for dynamic networks, we included this method as a
related research. Parameter R is set to 16 in the experiments.

4.1 Results

Accuracy All comparing algorithms were executed on different graphs. As ex-
pected, the absolute values of PageRanks by different algorithms of a node are
different. The results for 10 random nodes for all the datasets are shown in Fig. 2
for reference. Hence, comparing different algorithms in terms of absolute values
of the PageRank is not fare. Therefore the Spearman’s rank correlation coeffi-
cient [15] is used to compare the ranking of the proposed FPPR with that of the
comparing methods. The Spearman correlation between two vectors will be high
when observations have a similar rank between the two variables and it will be
lower otherwise. A value of it in between 0.8 to 1 is considered to be strongly
correlated [17]. The results of Spearman’s ranking coefficient for all nodes in the
network are shown in the Fig. 4. It is evident from the result that the proposed
FPPR performed equal or better than FIPR for all the network except RW2
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while comparing with the PI and MC as benchmarks. Note that MC and PI are
highly correlated with each other as both of these are recalculated over the full
graph once a new node is added to the graph.
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Fig. 2. PageRank for Randomly Sampled 10 nodes of different algorithms.

Spearman’s rank correlation with changes in network: As part of exper-
iment, we would like to see how the Spearman’s correlation coefficient changes
with addition of nodes. We recalculate Spearman’s correlation coefficient of the
proposed algorithm against the benchmark Power Iteration for the addition of
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each 10 nodes. The result is plotted in Fig. 3 for 6 data sets. The value dipped
around 26% for both random networks, while the Barabasi-Albert network shows
consistent improvement in the value of Spearman’s correlation coefficient. For
both real-world networks, the values are constant because, in general, real-world
retweet networks have few influential nodes (hubs) responsible for the tweet’s
diffusion resulting in high page rank scores throughout the evolution of the graph.
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Fig. 3. Spearman Correlation of FPPR VS PI over time. Each time tick denotes addi-
tion of 10 nodes in the network.

Execution Time: We checked the overall execution time of different comparing
algorithms and found that the proposed algorithm is magnitude faster than all
the methods we have experimented with for all data sets. The comparison is
presented in the Fig. 5. As expected, FIPR takes second lowest time as it is
designed for dynamic network and only updates the PageRank locally.

Table 2. Computation complexities of different PageRank algorithms, k is number of
updates, n is number of nodes, E is edgeset, R is the no of random walk simulations.

Algorithm Time complexity

Power Iteration Ω (kn2)
1(1−ρ)

Monte Carlo method Ω (knR)
(ρ)

FIPR O (kn)
(|E|)

Our Method O(k × davg)
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4.2 Computation Complexity

Computation complexities of different algorithms are shown in Table 2. Thus,
the worth case complexity of the proposed algorithm is O(k × davg), where k is
the number of node added to the network.
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Fig. 4. Spearman Correlation between all four approaches over the different data sets

5 Conclusion

In the present paper, we proposed a new algorithm for calculating PageRank for
dynamic directed graph. We consider the node addition for the same. We showed
thorough experimental results that the proposed algorithm perform better in
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terms of ranking from the existing FIPR algorithm. The execution time is much
faster while providing better results. Power Iteration algorithm is considered as
benchmark.

Experiments were performed on wide range of networks including random
networks, Barabasi-Albert network, and real world network. It is also shown
that the PageRank value differs between algorithms while the ranking shows
high correlation in terms of Spearman ranking correlation index.

Although the algorithm is executed for node addition, we believe this algo-
rithm can be modified and applied to the link addition as well. Similarly, node
and edge deletions may also be employed. These are kept as the future works in
the current research.
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Fig. 5. Comparing plots of execution time of different algorithms
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